‘The Goal of the Spring into ML School Is to Unite Young Scientists Engaged in Mathematics of AI’
The AI and Digital Science Institute at the HSE Faculty of Computer Science and Innopolis University organised a week-long programme for students, doctoral students, and young scientists on the application of mathematics in machine learning and artificial intelligence. Fifty participants of Spring into ML attended 24 lectures on machine learning, took part in specific pitch sessions, and completed two mini-courses on diffusion models—a developing area of AI for data generation.
The main topics of the scientific presentations were reinforcement learning, generative, and diffusion models.
Alexander Gasnikov, Rector of Innopolis University
‘The distinctive features of the Spring into ML school are its youthfulness and the strong fundamental component of scientific presentations. All lectures and talks were given by young scientists and researchers for equally active students, and most of the presentations were based on mathematics. It is wonderful that our university, which is one of the research centres in the field of artificial intelligence in Russia, became the venue for this scientific event.’
The published presentations (in Russian) can be found here.
The school programme also included such games as Name That Tune and What? Where? When?, movie screenings, excursions to Kazan, Sviyazhsk, and other networking events.
Alexey Naumov, Director for Basic Research at the AI and Digital Science Institute at the HSE Faculty of Computer Science
‘The goal of the Spring into ML school is to unite young scientists engaged in mathematics of AI. As a result of school discussions, several interesting projects emerged with the intersection of participants' competencies, which could lay the foundation for potential publications at A* conferences.’
Petr Mokrov, Skoltech (Skolkovo Institute of Science and Technology), participant of the Spring into ML School
‘The format and organisation of the school turned out to be suitable for such events. There are very few academic research groups in Russia working on machine learning and artificial intelligence. The participants know each other well, many became friends, but often they do not actually understand what their colleagues in adjacent teams are working on. Throughout the week spent in Innopolis, students, doctoral students, and academic supervisors communicated and exchanged experience, discussed their tasks, and addressed issues arising at the intersection between research directions. I found myself among like-minded people. And it was great.’
According to the organisers of the event from HSE and Innopolis University, the Spring into ML school can become a regular platform for discussion and exchange of experience among scientists and will launch a series of events in Russian IT universities dedicated to the mathematical foundations of artificial intelligence.
Innopolis University specialises in education, research, and development in the field of information technology and robotics. The Russian IT university collaborates with 297 industrial partners. The university's portfolio includes 114 projects for companies such as Gazprom, Aeroflot, KAMAZ, Norilsk Nickel, Rosseti, RusHydro, Severstal, and others. At Innopolis, there are 1,239 students from 35 countries as well as 152 scientific and pedagogical employees from 15 countries with working experience in leading world universities and IT companies.
See also:
‘Many Want to Create AI-Based Products and Become More Competitive’
In 2024, the online Russian-taught master’s programme ‘Artificial Intelligence,’ offered by the HSE Faculty of Computer Science, saw a record number of first-year students—over 300. What accounts for such a high interest in AI, how the curriculum is structured, and what new skills will graduates acquire? Elena Kantonistova, the programme’s academic director, shares more.
'I Would Like to Leave a Lasting Impact on Science'
Aibek Alanov pursues his own scientific research and leads two teams of scientists, one at HSE University and the other at AIRI. In this interview for the HSE Young Scientists project, he explores the parallels between today's AI researchers and early 20th-century physicists, discusses generative models, and shares his passion for bachata partner dancing.
HSE’S Achievements in AI Presented at AIJ
The AI Journey international conference hosted a session led by Deputy Prime Minister Dmitry Chernyshenko highlighting the achievements of Russian research centres in artificial intelligence. Alexey Masyutin, Head of the HSE AI Research Centre, showcased the centre’s key developments.
Drivers of Progress and Sources of Revenue: The Role of Universities in Technology Transfer
In the modern world, the effective transfer of socio-economic and humanities-based knowledge to the real economy and public administration is essential. Universities play a decisive role in this process. They have the capability to unite diverse teams and, in partnership with the state and businesses, develop and enhance advanced technologies.
AI on Guard of Ecology: Students from Russia and Belarus Propose New Solutions to Environmental Problems
An international online hackathon dedicated to solving environmental problems was held at HSE University in Nizhny Novgorod. Students employed artificial intelligence and computer vision to develop innovative solutions for image segmentation, predictive modelling (forecasting future events based on data from the past) of emissions and creating chatbots for nature reserves and national parks.
Taming the Element: How AI Is Integrating into the Educational Process Around the World
Artificial intelligence is gradually becoming an indispensable part of higher education. Both students and teachers use it to reduce the volume of routine tasks and expand their capabilities. The limitations and prospects of AI are discussed in the report ‘The Beginning of the End or a New Era? The Effects of Generative Artificial Intelligence (GAI) in Higher Education,’ published in the journal Modern Education Analytics, under the scientific supervision of HSE Academic Supervisor Yaroslav Kuzminov.
Analysing Genetic Information Can Help Prevent Complications after Myocardial Infarction
Researchers at HSE University have developed a machine learning (ML) model capable of predicting the risk of complications—major adverse cardiac events—in patients following a myocardial infarction. For the first time, the model incorporates genetic data, enabling a more accurate assessment of the risk of long-term complications. The study has been published in Frontiers in Medicine.
A New Tool Designed to Assess AI Ethics in Medicine Developed at HSE University
A team of researchers at the HSE AI Research Centre has created an index to evaluate the ethical standards of artificial intelligence (AI) systems used in medicine. This tool is designed to minimise potential risks and promote safer development and implementation of AI technologies in medical practice.
HSE Researchers Develop Novel Approach to Evaluating AI Applications in Education
Researchers at HSE University have proposed a novel approach to assessing AI's competency in educational settings. The approach is grounded in psychometric principles and has been empirically tested using the GPT-4 model. This marks the first step in evaluating the true readiness of generative models to serve as assistants for teachers or students. The results have been published in arXiv.
‘Philosophy Is Thinking Outside the Box’
In October 2024, Louis Vervoort, Associate Professor at the School of Philosophy and Cultural Studies of the Faculty of Humanities presented his report ‘Gettier's Problem and Quine's Epistemic Holism: A Unified Account’ at the Formal Philosophy seminar, which covered one of the basic problems of contemporary epistemology. What are the limitations of physics as a science? What are the dangers of AI? How to survive the Russian cold? Louis Vervoort discussed these and many other questions in his interview with the HSE News Service.