«Приятно думать, что найденные решения в перспективе могут помогать людям»
В Университете Иннополис подвели итоги международного отраслевого онлайн-хакатона Global Al Challenge. В нем соревновались команды разработчиков в области создания новых материалов с применением искусственного интеллекта. Третье место заняла команда DrugANNs, в числе участников которой — студенты факультета компьютерных наук НИУ ВШЭ.
За победу в онлайн-конкурсе боролись 90 команд из 15 стран, а общий призовой фонд составил 1 миллион рублей. Задача заключалась в предсказании активности разных молекул против определенного белка вируса COVID-19. Команды должны были оценить, является ли молекула активной против белка, построить модель, которая умеет предсказывать такую активность, и сделать предсказания для тестового набора данных.
Герман Магай
«По описанию задача показалась нам интересной, — отмечает Герман Магай, аспирант ФКН ВШЭ по профилю «Теоретические основы информатики», участник команды DrugANNs. — И мы решили собрать команду. В течение двух недель старались регулярно созваниваться и делиться прогрессом друг с другом, распределяли задачи. Помогло занять призовое место то, что каждый в команде внес свой вклад, каждый был специалистом в своей области, и в сумме наши усилия дали хороший результат».
Максим Бекетов
Максим Бекетов, аспирант 2-го года кафедры высшей математики ВШЭ, — о задаче: «Данных по такой активности, реально полученных в лаборатории или же методами вычислительной химии, не так много. К тому же у одной молекулы, если она большая, есть, скажем так, экспоненциально много конфигураций ее составных частей в пространстве. Какие-то из них могут оказаться активными против белка, а какие-то — нет. Пространственная структура тут очень важна: белок дан в виде определенного кода, по которому можно понять ее 3D-модель, и у этой 3D-модели может оказаться несколько точек, куда молекула может "прилепиться" — и подействовать — или не "прилепиться"».
По мнению Максима, применение машинного обучения в биологических или медицинских задачах мотивирует к участию в подобных соревнованиях: «Приятно думать, что найденные решения в перспективе могут помогать людям. Но не меньше привлекает и то, что сейчас в этой области появляются методы, за которыми стоит красивая математика — эквивариантные графовые нейросети, нейросети на симплициальных комплексах как обобщениях графов и тому подобное».
Дмитрий Киселев
С Максимом согласен Дмитрий Киселев, аспирант образовательной программы «Компьютерные и информационные науки», 3-й курс, участник команды DrugANNs, который отметил, что применение графовых нейронных сетей (GNN) является актуальным и быстро развивающимся направлением. «Последнее время GNN активно используют для решения задач в естественных науках, — говорит Дмитрий. — В частности, в химии для предсказания свойств молекул, их моделирования и т.д. Я давно хотел попробовать себя в этой области. Открытия в ней могут стать важными для всего общества, принести пользу». По его словам, задача предсказания активности молекул вполне известная, аналогичные соревнования проходят регулярно. «Я попробовал кучу репозиториев, модернизировал разные идеи, попытался совместить разные подходы, но хорошего качества добиться не удалось. В какой-то момент я даже расстроился и решил, что нужно глубже копать, — объясняет он. — Однако позже наши коллеги, химик и биоинформатик, помогли правильно предобработать данные, и все заработало».
Над задачей также активно работали участники команды из других университетов — химик, биоинформатик, специалисты по машинному обучению, в частности графовым нейросетям. Это позволило DrugANNs найти нужное решение и занять призовое место. «После завершения хакатона мы продолжаем общаться, — говорит Максим. — В том числе и по теме задачи хакатона: она всем нам интересна, мы хотели бы и далее в ней развиваться, участвовать в подобных хакатонах или пробовать силы в иных форматах».
Вам также может быть интересно:
Эксперты НИУ ВШЭ исследовали, как ведется подготовка специалистов в области ИИ
Институт статистических исследований и экономики знаний НИУ ВШЭ представил доклад, подготовленный на основе результатов специализированного обследования образовательных организаций высшего образования. Целью впервые проведенной работы стало выявление масштабов и условий обучения технологиям искусственного интеллекта в рамках образовательных программ высшего образования и дополнительных профессиональных программ в вузовском секторе.
«Нам удалось провести настоящий хакатон, когда нет заранее понятного пайплайна, как получить решение»
С 13 по 20 октября в НИУ ВШЭ прошел хакатон “HSE AI Assistant Hack: Python”, организованный факультетом компьютерных наук и Центром искусственного интеллекта ВШЭ. За призовые места боролись 89 студенческих команд из ведущих вузов страны.
В НИУ ВШЭ создали инструмент для разработки видеоигр
Команда мастерской «Игровая инженерия и интерактивные системы» Московского института электроники и математики им. А.Н. Тихонова (МИЭМ) НИУ ВШЭ предложила всем желающим принять участие в тестировании первой версии их программы для разработки игр — движка Claw Engine. Инструмент можно использовать для работы с трехмерными изображениями и для программирования собственных сценариев.
Ученые Вышки представили разработки, связанные с применением ИИ в медицине
Искусственный интеллект не заменит врача, но может стать ему отличным помощником. При этом здравоохранение нуждается в высокотехнологичных продуктах, которые способны быстро анализировать и контролировать состояние пациентов. Ученые Вышки применили ИИ для предоперационного планирования и постоперационной оценки результатов в спинальной хирургии и разработали автоматическую интеллектуальную систему для оценки биомеханики рук и ног.
Ученые Вышки представили проекты по этической экспертизе в сфере ИИ
Технологии искусственного интеллекта уже стали неотъемлемой частью повседневной жизни и активно применяются в различных отраслях экономики. Однако этические вопросы использования ИИ все еще требуют обсуждения и осмысления. Сегодня в России с участием ученых НИУ ВШЭ ведется работа над несколькими отраслевыми приложениями к национальному Кодексу этики в сфере ИИ, в которых будут конкретные рекомендации в помощь каждому, кто нуждается в понимании и анализе рисков и угроз со стороны ИИ.
Три команды ВШЭ стали победителями на всероссийском хакатоне «Цифровой прорыв»
В конце сентября в Москве состоялся всероссийский хакатон «Цифровой прорыв. Сезон: Искусственный интеллект». На соревнование собрались 314 команд и 1616 человек со всей страны. Они состязались в решении задач от партнеров хакатона — государственных организаций и компаний: «РЖД», «Росатома», Центра робототехники Сбера, «Сколтеха» и многих других. Три команды студентов факультета компьютерных наук НИУ ВШЭ приняли участие в хакатоне и выиграли в двух кейсах.
С помощью ученых НИУ ВШЭ и Сбера преподаватели смогут повысить качество онлайн-обучения
Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка научились определять вовлеченность участников онлайн-мероприятий. Метод, основанный на анализе видео лица, помогает выявить, насколько слушатель заинтересован в материале. Научная статья о проведенном исследовании опубликована в рамках Международной конференции по искусственному интеллекту в образовании — AIED 2024.
Вышка расширит сотрудничество с Агентством стратегических инициатив для разработки передовых решений
В Высшей школе экономики прошел День знакомства университета и Агентства стратегических инициатив (АСИ). Стороны представили свои исследовательские и аналитические проекты и наметили направления совместной работы. Задача ученых и экспертов — повысить эффективность и ускорить внедрение в практику прорывных научных разработок по широкому спектру направлений — от экономических прогнозов до нейропротезирования.
Исследователи НИУ ВШЭ и Сбера добавят эмоций искусственному интеллекту
Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка разработали специальную систему, которая с помощью больших языковых моделей сделает искусственный интеллект (AI) более эмоциональным при общении с человеком. Синтезом AI-эмоций займутся набирающие популярность мультиагентные модели. Научная работа о проведенном исследовании опубликована в рамках Международной совместной конференции по искусственному интеллекту — IJCAI 2024.
Вышка и «Яндекс» научат преподавателей российских вузов ИИ-грамотности
«Яндекс Образование» и факультет компьютерных наук НИУ ВШЭ (ФКН ВШЭ) создали совместный онлайн-гайд, посвященный промптингу — формулированию запросов к нейросетям. Он доступен всем на платформе «Яндекса» и в первую очередь будет полезен преподавателям, которые никогда не пользовались GPT в работе или только начинают применять ИИ-инструменты. Как правильно создать запрос к нейросети? Как грамотно использовать GPT-модели в образовательных целях? Какие задачи преподаватели могут решать с помощью искусственного интеллекта? Гайд отвечает на эти и другие вопросы по работе с нейросетями.